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Buckling and nonlocal elasticity of charged membranes
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The elastic behavior of an interacting, and, in specific, of a charged flexible membrane is considered. In the
first part of this paper the effective nonlocal elastic energy of a membrane due to a pairwise and arbitrary
intra-membrane interaction is derived. Nonlocal elasticity is included to all orders, this description, therefore,
corresponds to an infinite resummation of the standard gradient expansion. In the second part, the pair inter-
action between segments of &on averagg neutral membrane consisting of mobile positive and negative
charges is derived both field theoretically in the Gaussian approximation and using a simple ion-pairing
approximation. This model might also apply to strongly charged membranes with strongly condensed counter
ions. The resulting contribution to the elastic energy is negative and thus favors undulations of the membrane.
The bending modulus is extracted from the large-scale or small-momentum behavior of the elastic kernel and
found to be comparable tkgT for the case where ion pairing is dominant. The large-momentum elastic
response exhibits a markedly different scaling than the small-momentum regime and sensitively depends on the
small-distance cutoff and thus on molecular details.
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[. INTRODUCTION equal amounts of mobile cationic and anionic lipid mol-
eculeg[24]. Similar experimental systems have been studied
The description of flexible membranes in terms of theirin detail by Kaler and co-workel®5,2€6 and been found to
elastic moduli is a widely used concept that sets a platfornexhibit spontaneous vesiculation as well. Such a membrane
for developing theoretical concepts and interpreting experiis on average neutral, and a mean-field treatment would give
mental result$1,2]. The bending rigidity of a membrane can no energetic contribution at all. However, taking into ac-
be varied by various means, for example, by adsorbing parount correlations on a Gaussian level, a negative contribu-
ticles[3] or polymerg 4], by anchoring polymers by one end tion to both the normal and Gaussian bending rigidities was
to the membrang5,6], or by adding stiff components to the obtained 24], so that sucl{salty) membranes should exhibit
bilayer[7]. spontaneous vesiculation as well as enhanced undulations
Some time ago, it was realized by Winterhalter and Hel-even in the planar geometry. These results were corroborated
frich [8], that the electrostatic repulsion between differentby calculations based on the strongly correlated character of
parts of a charged membrane leads to a contribution to thihe condensed counter iof&7]. It was also argued that this
bending rigidity. This discovery spurned an immense activitymodel has some relevance for strongly charged membranes,
on the elastic behavior of charged membranes. Whereas since in this case the counter ions are tightly bound to the
the initial calculation by Winterhalter and Helfrich and sub- membrane and render a quasi-neutral, two-dimensional layer
sequent generalizations to arbitrary geometi@sthe elec- of mobile ions[24]. This mechanism, therefore, also favors
trostatic interactions were treated on the linear Debyeformation of vesicles for strongly charged membranes, but
Huckel level, the full nonlinear mean-field calculation was one has to keep in mind that spontaneous vesiculation al-
performed by Mitchell and NinharfilO] and Lekkerkerker ready results on the mean-field level and it is, therefore, dif-
[11]. The electrostatic coupling between the two monolayerdicult to judge whether fluctuations are responsible for ve-
that make up the lipid bilayers was also investigdtE2l13,  siculation or not. Very recently, however, it was shown
and the case of mobile charges on the membrane was shovenperimentally that strongly charged surfactant bilayers ex-
to modify the effective bending rigidityf14]. Stacks of hibit some superstructure consisting of undulating layers,
charged membranes were considered in a number of papeiserefore, indicative of a negative bending rigidji8,29.
[15-17, these studies were later also extended to include th€learly, this effect cannot be explained on the mean-field
case of no added sdli8,19. In all these calculations, the level, since mean-field theory predicts a positive bending ri-
electrostatic interactions were considered on a mean-fieldidity; on the other hand, this superstructure might very well
level. The bending rigidity was found to be positive for all be caused by the charge-fluctuation mechanism introduced
cases considered, meaning that the repulsive electrostatic iby Lau and Pincu§24].
teractions make the membranes effectively stiffer. Since the For neutral membranes, and in the case of attractive long-
Gaussian bending energy is negative, spontaneous vesicul@anged interactions, one expects a negative contribution to
tion is expected for low salt and high surface charge densithe bending rigidity, which could, if strong enough, also in-
ties, as indeed observed in experiments with charged mengluce undulating membrane superstructuf@8—32. This
braneq 20-23. line of thought was followed up by Brinkmann and Helfrich,
A new theoretical mechanism for a modification of the who considered the effect of van der Waals interactions on
bending rigidity of charged membranes was identified bythe bending rigidity33,34. Membrane superstructures have
Lau and Pincus, who considered a membrane consisting @ideed been observed in experiments with neutral mem-
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braneq35]. This experimental observation is backed up by all. ELASTICITY CAUSED BY PAIRWISE INTERACTIONS
host of previous indications of some sort of membrane su-

perst:yctutr)e[3d§]. In_ p(rftwous thioretlc?l :nveds?ganohns,_ al parameterized by a single-valued functiofR) as a function
negative bending rigidity was shown 1o 1€ad 10 Sphericalys yq yyo-dimensional coordinai®=(x,y). Assuming that

sg_dt_jlelikg, or tubular shapes, depe_nding on the type of stgqemprane segments interact via a pair potent{@) which
bilizing higher-order termi37]. In a different attempt to ex- only depends on the distancéetween membrane segments

plain membrane superstructures, a negative fourth-order cUj three-dimensional space, the full interaction energy of a
vature term was assumed, stabilized by yet a higher-ordejeformed membrane can be written as

curvature term, leading to typical egg-carton-like superstruc-
tures[38]. Spiky phases of smooth membranes have been 1
investigated in the context of a more general model for fluc- gE[h]= _f dZRf d’R’J1+[Vh(R)]?V1+[Vh(R")]?
tuating surface$39]. 2)A A

In previous calculations aimed at extracting elastic con-
stants from some type of interacting-membrane model, the

energy of a membrane was eith@r calculated for the pla- ) . ] ]

nar, spherical, and cylindrical geometries, from which theAll potentials and energies are measured in ur_m_s of the ther-
elastic constants can be derived ioy it was calculated fora Mal energykgT throughout this paper. We explicitly assume
sinusoidally deformed sheet, from which the spectrum of thdn€ shape fluctuations to be area conserving, i.e., the mem-
elastic energy can be obtainéahich gives the elastic coef- rane does not become locally thinner upon shape changes,

ficients as the coefficients of a small-momentum expansion Whic.h leads to _the squgre—root. prefactor in the bilinear form.
Our aim in this paoer is twofold: In this expression the integration extends over the projected
. . pap ' . areaA of the membrane, which is related to the true area of

(i) We derive a general formula that relates the pair PO,
X . e membrand, by

tential between membrane segments with the full nonlocaﬁ

elastic energy of membrane deformation. From the spectrum

of this elastic energy, the bending rigidity follows as the Aozf d?RY1+[Vh(R) T2 )

fourth-order coefficient in a small-momentum expansion. A

The full nonlocal expression also allows to consider the non-

perturbative regime where the local gradient expansion fail$n the following we will perform a systematic, nonlocal ex-

for long-ranged interactior{gl0]. Clearly, this approach only pansion of the energil) in powers of the membrane shaipe
works for cases where the pair-potential is the dominant conaccording to

tribution to the deformation energy of a membrane. We dem-

onstrate explicitly that our formula is analogous to the non-

local persistence-length contribution derived by Barrat and E[h]=E[O]+f d’Rh(R)G(R)
Joanny for the case of interacting polym@4d]. A similar Ao

Neglecting overhangs, the shape of a membrane can be

Xv{V(R=R")*+[h(R)—h(R")]?}. ()

theory as ours has been developed recently for semiflexible 1
polymers, where a buckling instability was found for suffi- + Ef dzRf d’R’h(R)h(R")K(R,R")+0O(h%),
ciently attractive pair-potentiafg!2]. Ao Ao

(i) We also calculate the effective pair-interaction be- 3

tween segments of a membrane consisting of equal amounts
of mobile cationic and anionic lipids. We do this in the pres-where the functions defined in this expansion are
ence of salt in the bulk and, therefore, generalize the original

calculation by Lau and Pincy4], which was for zero salt SE[h]

concentration. In the Gaussian approximation the resulting G(R):m , (4)
negative contribution to the bending rigidity is rather small h=0

and never outweighs the mechanic bending rigididg].

However, on the Gaussian level one neglects multiloop con- S2E[h]

tributions. In the strong coupling case, and this is where the K(R,R")= . 5)
Gaussian approximation fails severely, the physics is domi- oh(R)sh(R") h=0

nated by strongly bound ions pairs, which is missed by the

Gaussian theory that treats ions as point particles. We, ther@ne notes that we perturb around the true area of the mem-
fore, devise a second approximation, in which all ions arepraneA,, which is an important point. As a consequence, the
assumed to form pairs. Inserting the interaction between rosoundary of the integration domain in E(L) depends via
tating dipoles, which is nothing but the two-dimensional Eq. (2) on the displacement field and thus gives an extra
Keesom contribution to the van der Waals interaction, intocontribution in the functional derivatives in Eqg) and(5).

our expression for the elastic energy spectrum, we see th&bor a pair potential the linear term im vanishes and thus
the negative bending energy contribution is quite sizable an=0. The quadratic kernéd(R,R") contains four contribu-
can induce membrane buckling. tions
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v’(|R—R’|) ’(|§—R|) able small-distance cutoff, it follows that the description in
K(RR)=————"+§R-R")| dR———= terms of a nonlocal elastic modulus gives sensible results for
|IR—R’| Ao |R-R] almost all interaction potentials, as will be discussed in more

detail in Sec. IV.
—V25(R—R’)J d’Ru(|R—R|)
Ao A. Analogy with interacting polymers

In this section we will discuss the connection of the result
in Eqg. (9) to the analogous expansion for interacting poly-
mers performed by Joanny and Barrét]. They derived for
where the coordinate poifR, is located on the boundary of an inextensible polymer that interacts via the two-point in-
the integration domair\,. At this point we let the integra- teractionw(r) the following nonlocal contribution to the per-
tion areaA, go to infinity in which case the kern&(R,R") sistence length’:
only depends on the distanée-R’. We obtain after some

+v23(R—R')f d?Ru(|[R—Ry)|), (6)
Ao

algebra /(s)= ——f dx—w (X+5). (11)
cRy=— ZURD [ el siry+ Rovesry |2/ URD
(R)=- IR| (R) 4 (R) IR| ' The one-dimensional Fourier transformation yields
(7)
2X2 W’(X)
The two-dimensional Fourier transformation of the kernel /(q)= —f dx 1— T—COS(QX) , (12

reads

which is quite similar to our expression in the two-

v'(s), (8) dimensional cas€8) except that the persistence length is
divided by the momentum to the fourth power. To make the
connectlon manifest, we use the fact that the one-
dimensional deformed polymer can be viewed as a cut

o through a membrane, with an effective interactier),
K(Q)Iﬂf ds{g’s—2q.71(qs)Ju(s), (9  which is obtained after integration of the interactiofr)

0 over the transverse coordinate according to

which is the announced relation between the nonlocal elastic .
kernel K(q) and the membrane interactiar(r). The inte- W(S):f dxv (/s2+x2). (13
grand has a regular expansion in even powers of the momen- —o

tum g, which leads to the following expansion of the elastic ) _ ) _ ) )
kernel: In fact, inserting the interactiofi3) into expressiori12), we

y exactly obtain Eq(8) divided byq*. This is not surprising,
7q* (>
K(q)= ?fo dsv(s)s®—

" 252
K(a)=27 | ds[l—qT—Jf)(qs)

and we obtain our final result after another partial integration

6

192),

since in Gaussian order, no mode-mixing occurs and, there-
fore, a single-mode expansion with a wave vector pointing
(10) along a definite direction yields the same kernel as our gen-
eral expansion done in the last section. Clearly, this equiva-
A number of points are noteworthyi) It is seen that the lence will disappear at next-leading order in the vertex func-
quadratic term ing, which corresponds to an effective sur- tions, which, however, is not pursued in this paper.
face tension, vanishes, as it should because presence of this

term would indicate breaking of the rotational invariance. 11l. GAUSSIAN THEORY EOR INTERACTIONS WITHIN

dsU(s)55+O(q8)

This stands in clear contrast to similar calculations for an A SALTY MEMBRANE
interface, where the surface tension is the leading {&@h
(i) The leading term of Eq(10), which corresponds to a In this section we consider the partition function of a salty

curvature energy, is posi[ive for repu|sive forces and negamembrane, i.e., of a flexible two-dimensional Iayer that is on
tive for attractive forces. In the latter case, a buckling insta@dverage neutral and contains mobile positive and negative
bility is expected for sufficiently soft membrandsi) For ~ ions. The main goal here will be to derive the effective pair
short-ranged potentials, the momentum expansion i(Hy.  potential between two segments of such a membrane within
converges term by term. For power-law interactions only g>aussian theory, which can then be used as an input into our
few terms will be finite, making a full expansion impossible. nonlocal elasticity theory developed in the last section.

Still, the exact expression for the elastic kernel in F9), The Gaussian field theory for a flexible layer that contains
which retains the full momentum dependence and thus norsalt ions and is described by a height functi(R) reads

local terms to all orders, converges for all pote4ntials, which D L
for small distances diverge weaker tha(s)~s~* and for _ 3 3. “1, ,
large distances decay faster thafs)~s 2. Since possible [h]= p[_if d rf d>r’ p(r)vpp(r.r)e(r’),
ultraviolet divergences can be removed by introducing a suit- (14)
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where Z, is the partition function of the inverse Coulomb Do 1 . 5 .
operator, Z,~ y/detv. This second-order expansion corre- Z:f 7 eXD{—EJ d fJ dr" g(rvpp(r,r')é(r’)
sponds to the Debye-idkel (DH) theory generalized to an v
interfacial geometry. The higher-order terms in the fluctuat- K= 3 )

ing field ¢ that we neglect contain nonlinear effe¢ssich as - mf d°r8(2)g(R) (1) ¢ (18)
present in the Poisson-Boltzmann théoryut also higher-
order correlation effects. These higher-order terms have rep
cently been considered for the bulk situation in a systematic
field-theoretic expansiof44]. The ion-pairing approxima-
tion, introduced in Sec. IVB, is a heuristic approach that s 9(R)=38(R+a)—=8(R)+ 6(R—Ro—a)— 6(R—Ry),
capable of dealing with these nonlinear effects. It is impor-

tant to note that the DH theory in the present formulation, .

although it neglects nonlinear effects, goes beyond the meaf"d corresponds to the displacement of two membrane seg-
field (Poisson-Boltzmannapproach in that correlations and Ments, which are at a distané®, by a small stepa each
fluctuations are included on a Gaussian level. The kergél (which we assume to point along the direction of the distance

is the functional inverse of the DH potential and is definedV€Cto?- In the limit of small incremental displacemeathe
by [45] weight function can be written as

he weight functiong(R) is defined as

(19

— R 2
v,},_l'(r,r’)zvgl(r—r’)+K25(r—r’)/477/B g(R)=aVé(R—Ry)—aVd(R)+0(a%). (20)

+k_vJ1+[Vh(R)]?8[z—h(R)] The second derivative of the effective interaction between
membrane segments, which we denote bRr), then follows
X8(r=r")4n/ g, (15 as
where v(r)=/g/r is the Coulomb potential and’g INnZ—InZ(a=0)
=e?/4mekgT is the Bjerrum length. The screening length in —v'(Ro)=———%——| . (21)
the bulk, 1, is defined in the standard way by a a=0

where Z denotes the modified partition function defined in

K2=47T/BE (qj)zcj , (16) Eq. (18). Expanding the partition function in powersatnd
i using Wicks theorem, the second derivative of the interaction
potential is
whereq; andc; are the valency and concentration of ionic
speciesj. A second length scale emerges,®, which is K2 92
defined by v"(Ro)=— —(#(R)p(R+Rp))%. (22

32m2/4 IR2

K::47T/BE (qj:)zcj:, (17) Integrating l_aoth sides twice, omitting any i_ntegratic_m con-
i stants, the final result for the membrane pair potential is

whereq;” andc; are the valency and surface density of ions 2

K_
located in the membrane. The full partition functi¢iv) U(RO):_WU%H(O’RO)- (23
with an arbitrary position of the ion-containing surfateés T8
intractable. So we intend to use the perturbative treatment o _
from the last section, for which we need as an input the paitvherevpy, is given by Eq(15) and using a planar membrane
interaction between membrane segments calculated for tHe=0. It remains to actually calculatepy(r,r’'), which is
p|anar reference membrane Conﬁguration_ Since the menc.omplicatEd because of the broken translational invariance in
brane position in the planar state constitutes a symmetrihezdirection. Since the system still has translational invari-
plane, no perpendicular force component is present, and tice parallel to the plane, we use(R,z)=(x.y,z) and
only potential contribution comes from a membrane dis-may write
placement along the membrane surfashich is analogous

to saying that the electrostatic forces generate no out-of- 2 )
plane torque; note that this is different in situations where the vDH(r,r’)zf Ze'p'(R’R Yoon(z,2',p), (24
up-down symmetry is broken as, for example, for charged (2m)

interfaces between two different medido calculate the ef-

fective interaction between membrane segments we definewith a similar transformation for the inverse potentia); .

new partition function that includes a lateral displacement of The solution can be calculated in a straightforward man-
membrane segments, ner and is given by45]
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rationsR<«_!, Eq. (30) for R>«_!, and a crossover be-

, 27T/B , _
vpn(z,2 ,p)=\/K2—sz exf —|z—z'|\kZ+p?] tween Eqs(30) and(31) at R~ «~ tIn[k_/k].
IV. RESULTS

exd —(|z|+|2 . . . .
H-dzd+1z'D In this section we present results for the effective bending

rigidity of a salty membrane. We also look at the full nonlo-
cal behavior of the elastic modulus. In specific, we will see
: (29 that for large momenta a modified effective elastic behavior
results. In the first part, we will do the analysis for the salty
membrane in the Gaussian approximation, as derived in the
previous section. In the second part, we will derive an ap-
proximation that should be valid in the strong-coupling limit,
s namely, we will consider the positive and negative ions to
m/ g . S
vpu(z=02'=0p)= ——-——. (26) form strongly bound dipole pairs in the membrane plane.
2K+ pPt ke The effective interaction between rotating dipoles gives an
. effective interaction that is one contribution to the van der
The Debye-Huakel interaction in real space follows by a \waals energy. In the latter case, the contribution to the bend-
two-dimensional Fourier transformation and only depends ofng rigidity is much larger.
the lateral distanc® between the two points, it reads

2\ K2+ p2+ K_

X%+ p?]

In the limit of two points confined to the salty plane the
kernel becomes

A. Gaussian approximation

= d R
%(p), (27 The effective interaction between membrane segments is
0 K+ p tK_/2 determined by Eqg23) and(27). For sufficiently large con-

. . . . centration of ions in membran&,_ > «, the effective inter-
where 7, is the Bessel function of first kingd6]. In the  ,tion is given by

absence of salt in the bulk, i.e., fa=0, the integral can be

vpH(R) =78

calculated in closed form and leads[#Y7] [ 1 2
= for R<—
R /g 7/ gK_ N Rek_ { D 29 R K=
U =5 1
o R 4 62 ¢ 2 2| 16 2 2 In(k/2x_)
v(R)=— 5 { yg for —<R<——,
whereNy andH, denote the Neumann and the Struve func- 327° | k=R K= K
tions, respectively46]. The asymptotic behavior is g 2«R o 2 In(:</2:<=)<
/s /pK= \ R? K
vpn(R) = "> In[Rx_], (29 (32
for R s~ d whereas for very small membrane ion concentraton< «
or R=k-", an we obtain the result
4/ 2 ,—2«R
vor(R)=——, (30) o(R)~_ =% 33
KR ( 32mR? 33

71 . . .
for R>«_". We see that screening is for large separationsrhe potential Eq(32) contains an intermediate range where
much weaker than in the case of a three-dimensional sajhe presence of membrane ions is important and changes the
solution, resulting in a DH interaction that is in fact long f,nctional form to aR~® dependence. Note that this func-
ranged. In the presence of salt ions in the embedding spaggna| form is similar to the van der Waals interaction.
the behavior is modified at large separations. The behavior In Fig. 1 we plot the rescaled kerriék K« in the limit

now depends on the relative salt concentration in the inter- S . . )
face and in the bulk: fok>x_ , that means for large bulk of vanishing bulk ion concentration=0 as determined by

salt concentration, one has a behavior described by Z=. Egs.(9). (23), and(27) as a function of the rescaled momen-

~_ -1 . . AT
for short separationB< x~* and the regular DH interaction UM d=0x_". As is clearly seen, the bending rigidity con-
tribution is negative, as expected for an attractive interaction.

/ge <R In Fig. 1(b) we plotK/q* that goes to a constant for small
UDH(R):T' (3D values of the momentum, demonstrating that indeed the
small momentum behavior is dominated by the bending ri-
for R>« "% in this case the salt ions in the plane are rela-gidity. Figure Ic) demonstrates that the large scale behavior
tively unimportant. In the opposite limits<«_, for small is described by the behavidt(q)~g%In(q) and thus very
bulk salt concentration, one obtains Eg9) for short sepa- different from the low-momentum behavior.

051401-5



ROLAND R. NETZ PHYSICAL REVIEW E 64 051401

g Y however, is that the effective elastic energy has a much
0.1 a) slower momentum dependence for large momenta than it
o2 does for small momenta. The present calculation is on the
Gaussian level. Nonlinear effects, such as ion pairing, are
03 neglected and lead to an underestimation of the contribution
-0.4 to the bending rigidity. This is so because the neglect of
05 ion-pairing overestimates the power of ions to screen the
o2 4 6 8 10 interaction. In the following section we present a heuristic
9 analysis that aims at lifting this deficiency.
-0.0006 B. Dipole-dipole interaction
7K In the following we treat a membrane which contains ions
-0.0008 that form ion pairs, i.e., a membrane with mobile and rotat-
ing surface dipoles. The applications of this model are mani-
0.001 fold, since lipid bilayers contain zwitterionic headgroups that
0 02 04 06 08 1 indeed exhibit large dipole moments. In the present context,
q we wish to interpret this model as an approximation for the
0 strong-coupling limit where ions are so strongly bound to
s -0.002 ©) each other that they can be treated as dipoles in which the
a~= 0004 two charges are separated by a distamce
In@ ™ To proceed, the interaction between two dipoles is given
-0.006 by
0.008
001 u*/g
0 200 400 600 800 1000 w(r,0,,60,,¢)=— 3 [2 cos6, cosh,
i r
—sin#, sinf, cosg], (36)

FIG. 1. Momentum-dependent elastic rescaled keriel
=Kk_* as a function of the rescaled momentarrqx_ fora  where #; and 6, are the polar angles with respect to the
membrane containing positive and negative ions in the Gaussiaconnecting line between the two dipoles afids the mutual
approximation with no added salt in the bulk. The plofliishows  azimuthal angle. The dipole strength in reduced units is de-
that the small-momentum limit is correctly given by Eg§5). The noted by the lengthu.
p!ot in (c) demonstrates that the large-momentum behavior obeys a The effective interactioﬁ(r) between two freely rotating
different power law. dipoles is obtained by averaging over all angles according to

the bending rigidity follows as o 2m)e 27 o o XA —W(r, 0,65, )],

<2 o (37

In the presence of bulk salt, and using the expan&lh _ | 2rd¢ (27d 6, (27d6,
w(r)=-—In f ==

K(q)=- 102407 12 +0(xL/K%), 34 which corresponds to the Keesom contribution to the van der
Waals interaction. The integrals in E@®7) cannot be done
in closed form, however, with certain, unimportant modifi-
cations we can come up with simple close-form expressions
q* 2 s that capture the fundamental physics of the averaging done
K(Q)=— 355+ O(k=/x%), (39  in Eq.(37).

First, motivated by the calculation done in Sec. lll, we
in the limit of high membrane-ion density, for_> . The will assume j[hat the dipoles Iie_in the plane that contains the
asymptotic law(35) is denoted by a broken line in Fig(H. connecting line between.the dipoles. Therefapes 0. The

Remarkably, for large membrane ion concentration, thdnteraction(36) can be written as
effective bending rigidity, which is the prefactor of tio@ 2,
term in Eq.(35), goes to a constant value. This saturation is \y(r ¢, ¢,)=— v B[% cog 01+ 0,)+ X cog 6,— 6,)],
due to the screening done by membrane ions themselves and r3
is of course completely missed by approaches that neglect (39
the screening of interactions due to correlations of membrane . .
ions. It is also seen that the contribution to the bending ri-2"d the averaging over the two angigand 6, in Eq. (37)
gidity is never larger than roughly 1/1000 in unitskgfT and leads to
is, therefore, not large enough by itself to cause membrane ) — 2, 193 2, 1903
buckling since membranes have usually a bending rigidity of W(r) == In(Zo[ "/ /2r" T SU™//2r]), (39)
the order of or larger than thermal energy. What transpiresyith the limiting behavior

for the case of low membrane-ion densiky, <«, and
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u?/g , g ¢
B = for r<(u’/g)*? 200) @
w(r)=— (40 -400
5u'/g 2, \13
for (u/g)~"<r. -600
8r® 800
To make the resulting functional form of the interaction -10000
even simpler, we now assume both dipoles to rotate in planes
perpendicular to the connecting line, i.e., we gkt 6,
= /2. The interaction(36) is, therefore, given by
0316
2, ~ 473
u“/'g COS¢h q°K
w(r,¢)=————, (41)
r 0.32
and the averagin@37) leads to
_ -0.324
w(r)=—In(Zo[u/g/r%)). (42)
0
The limiting behavior of this expression is 05 c)
~_3~ ’
u?/ , K
B for r<(u?/p)3 !
_ r3 “3 15 L
w(r)=— 43
u'/g 2, \13 2
for (u/g)"<r,

4r6 0O 200 400 600 800 1000
q

and we again obtain a ® decay for large separations, as _ -
expected for van der Waals type of interactions. The FIG. 2. Momentum-dependent elast|c~rescaled keritel
asymptotic form of the interaction given b@7) with all  =Kc=? as a function of the rescaled momentara q(u®/s) ** for
three interactions integrated over will be similar to our re-& membrane containing positive and negative ions in the ion-paring
sults for the simplified cases. For a collection of many di-8PProximation. The plot irb) shows that the small-momentum
poles one expects multibody effects, and in specific one exiMit is correctly given by Eq(45). The plot in (c) demonstrates
pects the two-body interaction to be effectively weakenedhat the large-momentum behavior obeys a different power law.
due to the coupling to other dipoles. We remind ourselves
that it is a similar coupling between mobile ions that changes In Fig. 2 we plot the rescaled kernkl=KcZ?2 as deter-
the DH potential at an interface containing mobile ions frommined by Egs.(9) and (44) as a function of the rescaled
a 1k decay to a ¥f decay at large separations, see e9). momentumqg=q(u2/)"3 As is clearly seen, the bending
However, in the present case, this effect is expected 0 bggigity contribution is negative, as expected for attractive

much smaller, since dipoles are much less effective innteractions In Fig. &) we plotK/a* that goes to a constant
screening than free charges. First of all, it is known that th ' 9. P d g
or small values of the momentum, similarly to our results

presence of a dielectri@ipolan medium only changes the . . . L :
) . - for the Gaussian calculation displayed in Fi¢h)l Using the
prefactor of the charge-charge interaction and not the type Oe&pansior(lO) the bending rigidity is determined by

power of decay. This is true if the dielectric medium is dis-

tributed over the entire three-dimensional space. In the

present case the rotating dipoles are confined to a plane, and K(q)=—0.323582q*u®3/ &3, (45)

the long-range response functions are not modified for large

separations, not even the prefactpt8]. We, therefore, can

neglect the presence of other rotating dipoles in calculatingvhich is denoted by a broken line and agrees with the

the effective interaction, at least for large separatiet®s. asymptotic behavior of the full kernel displayed in FigoR2
The effective interaction between membrane segments isigure 2c) demonstrates that the large scale behavior is de-

proportional to the dipole density squared. Assuming that alkcribed by the behavidf (q)= —2g° and thus intermediate

salt ions form dipoles, the dipole density equals the salt denin scaling between a bending energy and a surface tension.

sity c— in the membrane layer. We obtain for the effective A rough estimate for the maximal value of the numerical

interaction between two membrane segments covered witprefactor in Eq.(45) can be obtained by assuming a dipole

rotating dipolegwhere for numerical convenience we take length of the ordeu~/z and a close-packed array of ions,

the somewhat simpler expressiti?)] c_~1/u?, in which case one has(q)~ —q*3. This corre-
) s 3 sponds to a negative contribution to the bending rigidity of
v(r)=—c In(Zo[u/g/r7]). (44 1/3(in units of the thermal energywhich for a bilayer has
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to be multiplied by a factor of 2 and might be large enoughmomentum-dependent energy spectriitg) for deforma-
to lead to the undulations observed for soft surfactant layertions of a neutral membrane containing mobile positive and

in Refs.[28,29.

negative ions. This calculation is dorig in the Gaussian

To obtain an independent estimate for the appropriat@pproximation, which should be valid when the fraction of
prefactor of the interaction in E¢45) we remind ourselves strongly bound ion pairs is small, arfd) in the ion-pair
that the van der Waals interaction between two membran@Pproximation, where all ions are assumed to form tightly

unit volumina goes likew(r)=A/7?r® whereA is the di-

bound ion pairs. Both calculations give qualitatively the

mensionless Hamaker constants, which for membranes iEme behaviofwith the ion-pair approximation yielding a

water is of the order of unityin units of thermal energy

The van der Waals interaction between two membrane se

ments of thicknessl goes likev(r)=Ad* #%® for large

separations. Comparing this with the long-range behavior

Eq. (42 we obtain the relatiom? u*/3=4d?A/ 7. We as-

ger prefactor to the bending energy contributjaxhibit-
ing a negative elastic kernel, i.&,(q)<0. For small mo-
enta(large length scalgshe elastic energy is characteristic

off a bending energy, i.e_., it behaves lé$q)~ —q*. For

dence on the momentum: We obtai(q)~—q* for the

sume that the Hamaker constant only considers contributioqén_pairing approximation andk(q)~—gq2ing for the
due to fluctuating dipoles. We can thus eliminate the density;5,ssian approximation. Assuming that the interaction-

of ions from the elastic energy expressi@®b) and obtain

0.131 131°Aq*

K ~_
(q) (UZ/B)ZIS

(46)

Assuming realistic values for the membrane thicknesks,
~3 nm, Bjerrum length/g~0.7 nm, and the dipole length,

u~0.4 nm, the bending rigidity contribution becomes

K(a)/q*~—5A. (47)

induced bending rigidity contribution is indeed large enough
such as to overcompensate the bare bending rigidity, what
will be the structure of the membrane? Adding the
interaction-induced elastic energy due to dipolar interaction,
proportional toK (q) ~ — ¢ (u?/g)*3q* for small wave vec-
tors andK (q) ~ —c2 (u?/g)q° for large wave vectorécom-

pare Fig. 2, and the bare mechanical bending energy, pro-
portional toKoq*, there will be a maximally instable wave
vector at some length scale of the ordex*
~KocZ?(u?>/g) 1. Assuming that there are higher-order

We see that the negative contribution to the bending rigiditt€rms in the membrane displacement that will stabilize the
can be comparable to unity and thus induce a buckling trand€mbrane shape, this suggests that the membrane shows un-
sition of flexible membranes if the corresponding Hamakerdulations of this wavelength*. These findings, therefore,
constantA is large enough. We hasten to add that the resulffight help to explain the recently observed undulations of
for the leadingg® term of the elastic energy depends sensi-Strongly charged membran28,29 and the superstructures
tively on the small-distance behavior of the interaction. Forffequently observed with neutral phospholip{@g]. In this
the present case of rotating dipoles, this interaction divergekeSPect it is worth repeating that even neutral lipids contain

asr 2 for small separations, see E@?2), which gives an

integrable but quite large contribution to the bending rigidity.

For a different cutoff a different result will be obtained.

V. DISCUSSION

large dipole moments due to their zwitterionic nature.
Comparing our result for the bending rigidity within the
Gaussian approximation, E(5), with the result by Lau and
Pincus[24], we note that the results differ by a factor of 16
and a logarithmic term. It is conceivable that the difference is
due to the fact that we perform a perturbative expangion

In this paper we introduce a method to calculate, based osecond order of the membrane displacement fig¢léround
an arbitrary pairwise interaction between membrane sega flat reference state, whereas Lau and Pincus evaluated the
ments, the effective nonlocal elastic modulus for membrandree energies of cylindrical and spherical shapes in a large

deformations.

We wuse this method to calculate theadius expansion. This issue deserves further studies.
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