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Buckling and nonlocal elasticity of charged membranes

Roland R. Netz
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~Received 12 March 2001; published 18 October 2001!

The elastic behavior of an interacting, and, in specific, of a charged flexible membrane is considered. In the
first part of this paper the effective nonlocal elastic energy of a membrane due to a pairwise and arbitrary
intra-membrane interaction is derived. Nonlocal elasticity is included to all orders, this description, therefore,
corresponds to an infinite resummation of the standard gradient expansion. In the second part, the pair inter-
action between segments of an~on average! neutral membrane consisting of mobile positive and negative
charges is derived both field theoretically in the Gaussian approximation and using a simple ion-pairing
approximation. This model might also apply to strongly charged membranes with strongly condensed counter
ions. The resulting contribution to the elastic energy is negative and thus favors undulations of the membrane.
The bending modulus is extracted from the large-scale or small-momentum behavior of the elastic kernel and
found to be comparable tokBT for the case where ion pairing is dominant. The large-momentum elastic
response exhibits a markedly different scaling than the small-momentum regime and sensitively depends on the
small-distance cutoff and thus on molecular details.
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I. INTRODUCTION

The description of flexible membranes in terms of th
elastic moduli is a widely used concept that sets a platfo
for developing theoretical concepts and interpreting exp
mental results@1,2#. The bending rigidity of a membrane ca
be varied by various means, for example, by adsorbing
ticles @3# or polymers@4#, by anchoring polymers by one en
to the membrane@5,6#, or by adding stiff components to th
bilayer @7#.

Some time ago, it was realized by Winterhalter and H
frich @8#, that the electrostatic repulsion between differe
parts of a charged membrane leads to a contribution to
bending rigidity. This discovery spurned an immense activ
on the elastic behavior of charged membranes. Wherea
the initial calculation by Winterhalter and Helfrich and su
sequent generalizations to arbitrary geometries@9#, the elec-
trostatic interactions were treated on the linear Deb
Hückel level, the full nonlinear mean-field calculation w
performed by Mitchell and Ninham@10# and Lekkerkerker
@11#. The electrostatic coupling between the two monolay
that make up the lipid bilayers was also investigated@12,13#,
and the case of mobile charges on the membrane was sh
to modify the effective bending rigidity@14#. Stacks of
charged membranes were considered in a number of pa
@15–17#, these studies were later also extended to include
case of no added salt@18,19#. In all these calculations, th
electrostatic interactions were considered on a mean-
level. The bending rigidity was found to be positive for a
cases considered, meaning that the repulsive electrostat
teractions make the membranes effectively stiffer. Since
Gaussian bending energy is negative, spontaneous vesi
tion is expected for low salt and high surface charge de
ties, as indeed observed in experiments with charged m
branes@20–23#.

A new theoretical mechanism for a modification of t
bending rigidity of charged membranes was identified
Lau and Pincus, who considered a membrane consistin
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equal amounts of mobile cationic and anionic lipid mo
ecules@24#. Similar experimental systems have been stud
in detail by Kaler and co-workers@25,26# and been found to
exhibit spontaneous vesiculation as well. Such a membr
is on average neutral, and a mean-field treatment would g
no energetic contribution at all. However, taking into a
count correlations on a Gaussian level, a negative contr
tion to both the normal and Gaussian bending rigidities w
obtained@24#, so that such~salty! membranes should exhib
spontaneous vesiculation as well as enhanced undula
even in the planar geometry. These results were corrobor
by calculations based on the strongly correlated characte
the condensed counter ions@27#. It was also argued that thi
model has some relevance for strongly charged membra
since in this case the counter ions are tightly bound to
membrane and render a quasi-neutral, two-dimensional la
of mobile ions@24#. This mechanism, therefore, also favo
formation of vesicles for strongly charged membranes,
one has to keep in mind that spontaneous vesiculation
ready results on the mean-field level and it is, therefore,
ficult to judge whether fluctuations are responsible for v
siculation or not. Very recently, however, it was show
experimentally that strongly charged surfactant bilayers
hibit some superstructure consisting of undulating laye
therefore, indicative of a negative bending rigidity@28,29#.
Clearly, this effect cannot be explained on the mean-fi
level, since mean-field theory predicts a positive bending
gidity; on the other hand, this superstructure might very w
be caused by the charge-fluctuation mechanism introdu
by Lau and Pincus@24#.

For neutral membranes, and in the case of attractive lo
ranged interactions, one expects a negative contributio
the bending rigidity, which could, if strong enough, also i
duce undulating membrane superstructures@30–32#. This
line of thought was followed up by Brinkmann and Helfric
who considered the effect of van der Waals interactions
the bending rigidity@33,34#. Membrane superstructures hav
indeed been observed in experiments with neutral me
©2001 The American Physical Society01-1
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ROLAND R. NETZ PHYSICAL REVIEW E 64 051401
branes@35#. This experimental observation is backed up b
host of previous indications of some sort of membrane
perstructure@36#. In previous theoretical investigations,
negative bending rigidity was shown to lead to spheric
saddlelike, or tubular shapes, depending on the type of
bilizing higher-order term@37#. In a different attempt to ex-
plain membrane superstructures, a negative fourth-order
vature term was assumed, stabilized by yet a higher-o
curvature term, leading to typical egg-carton-like superstr
tures @38#. Spiky phases of smooth membranes have b
investigated in the context of a more general model for fl
tuating surfaces@39#.

In previous calculations aimed at extracting elastic c
stants from some type of interacting-membrane model,
energy of a membrane was either~i! calculated for the pla-
nar, spherical, and cylindrical geometries, from which t
elastic constants can be derived, or~ii ! it was calculated for a
sinusoidally deformed sheet, from which the spectrum of
elastic energy can be obtained~which gives the elastic coef
ficients as the coefficients of a small-momentum expansi!.

Our aim in this paper is twofold:
~i! We derive a general formula that relates the pair

tential between membrane segments with the full nonlo
elastic energy of membrane deformation. From the spect
of this elastic energy, the bending rigidity follows as t
fourth-order coefficient in a small-momentum expansio
The full nonlocal expression also allows to consider the n
perturbative regime where the local gradient expansion f
for long-ranged interactions@40#. Clearly, this approach only
works for cases where the pair-potential is the dominant c
tribution to the deformation energy of a membrane. We de
onstrate explicitly that our formula is analogous to the no
local persistence-length contribution derived by Barrat a
Joanny for the case of interacting polymers@41#. A similar
theory as ours has been developed recently for semiflex
polymers, where a buckling instability was found for suf
ciently attractive pair-potentials@42#.

~ii ! We also calculate the effective pair-interaction b
tween segments of a membrane consisting of equal amo
of mobile cationic and anionic lipids. We do this in the pre
ence of salt in the bulk and, therefore, generalize the orig
calculation by Lau and Pincus@24#, which was for zero salt
concentration. In the Gaussian approximation the resul
negative contribution to the bending rigidity is rather sm
and never outweighs the mechanic bending rigidity@43#.
However, on the Gaussian level one neglects multiloop c
tributions. In the strong coupling case, and this is where
Gaussian approximation fails severely, the physics is do
nated by strongly bound ions pairs, which is missed by
Gaussian theory that treats ions as point particles. We, th
fore, devise a second approximation, in which all ions
assumed to form pairs. Inserting the interaction between
tating dipoles, which is nothing but the two-dimension
Keesom contribution to the van der Waals interaction, i
our expression for the elastic energy spectrum, we see
the negative bending energy contribution is quite sizable
can induce membrane buckling.
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II. ELASTICITY CAUSED BY PAIRWISE INTERACTIONS

Neglecting overhangs, the shape of a membrane can
parameterized by a single-valued functionh(R) as a function
of the two-dimensional coordinateR5(x,y). Assuming that
membrane segments interact via a pair potentialv(r ) which
only depends on the distancer between membrane segmen
in three-dimensional space, the full interaction energy o
deformed membrane can be written as

E@h#5
1

2EA
d2RE

A
d2R8A11@“h~R!#2A11@“h~R8!#2

3v$A~R2R8!21@h~R!2h~R8!#2%. ~1!

All potentials and energies are measured in units of the th
mal energykBT throughout this paper. We explicitly assum
the shape fluctuations to be area conserving, i.e., the m
brane does not become locally thinner upon shape chan
which leads to the square-root prefactor in the bilinear for
In this expression the integration extends over the projec
areaA of the membrane, which is related to the true area
the membraneA0 by

A05E
A
d2RA11@“h~R!#2. ~2!

In the following we will perform a systematic, nonlocal ex
pansion of the energy~1! in powers of the membrane shapeh
according to

E@h#5E@0#1E
A0

d2Rh~R!G~R!

1
1

2EA0

d2RE
A0

d2R8h~R!h~R8!K~R,R8!1O~h3!,

~3!

where the functions defined in this expansion are

G~R!5
dE@h#

dh~R!
U

h50

, ~4!

K~R,R8!5
d2E@h#

dh~R!dh~R8!
U

h50

. ~5!

One notes that we perturb around the true area of the m
braneA0, which is an important point. As a consequence,
boundary of the integration domain in Eq.~1! depends via
Eq. ~2! on the displacement fieldh and thus gives an extra
contribution in the functional derivatives in Eqs.~4! and~5!.
For a pair potential the linear term inh vanishes and thus
G50. The quadratic kernelK(R,R8) contains four contribu-
tions
1-2
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BUCKLING AND NONLOCAL ELASTICITY OF CHARGED . . . PHYSICAL REVIEW E 64 051401
K~R,R8!52
v8~ uR2R8u!

uR2R8u
1d~R2R8!E

A0

d2R̃
v8~ uR̃2Ru!

uR̃2Ru

2“

2d~R2R8!E
A0

d2R̃v~ uR̃2Ru!

1“

2d~R2R8!E
A0

d2R̃v~ uR̃2Rbu!, ~6!

where the coordinate pointRb is located on the boundary o
the integration domainA0. At this point we let the integra-
tion areaA0 go to infinity in which case the kernelK(R,R8)
only depends on the distanceR2R8. We obtain after some
algebra

K~R!52
v8~ uRu!

uRu
1E d2R̃Fd~R!1

R̃2

4
“

2d~R!Gv8~ uR̃u!

uR̃u
.

~7!

The two-dimensional Fourier transformation of the kern
reads

K~q!52pE
0

`

dsF12
q2s2

4
2J0~qs!Gv8~s!, ~8!

and we obtain our final result after another partial integrat

K~q!5pE
0

`

ds@q2s22qJ1~qs!#v~s!, ~9!

which is the announced relation between the nonlocal ela
kernel K(q) and the membrane interactionv(r ). The inte-
grand has a regular expansion in even powers of the mom
tum q, which leads to the following expansion of the elas
kernel:

K~q!5
pq4

8 E
0

`

dsv~s!s32
pq6

192E0

`

dsv~s!s51O~q8!.

~10!

A number of points are noteworthy:~i! It is seen that the
quadratic term inq, which corresponds to an effective su
face tension, vanishes, as it should because presence o
term would indicate breaking of the rotational invarianc
This stands in clear contrast to similar calculations for
interface, where the surface tension is the leading term@40#.
~ii ! The leading term of Eq.~10!, which corresponds to a
curvature energy, is positive for repulsive forces and ne
tive for attractive forces. In the latter case, a buckling ins
bility is expected for sufficiently soft membranes.~iii ! For
short-ranged potentials, the momentum expansion in Eq.~10!
converges term by term. For power-law interactions onl
few terms will be finite, making a full expansion impossib
Still, the exact expression for the elastic kernel in Eq.~9!,
which retains the full momentum dependence and thus n
local terms to all orders, converges for all potentials, wh
for small distances diverge weaker thanv(s);s24 and for
large distances decay faster thanv(s);s22. Since possible
ultraviolet divergences can be removed by introducing a s
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able small-distance cutoff, it follows that the description
terms of a nonlocal elastic modulus gives sensible results
almost all interaction potentials, as will be discussed in m
detail in Sec. IV.

A. Analogy with interacting polymers

In this section we will discuss the connection of the res
in Eq. ~9! to the analogous expansion for interacting po
mers performed by Joanny and Barrat@41#. They derived for
an inextensible polymer that interacts via the two-point
teractionw(r ) the following nonlocal contribution to the per
sistence lengthl :

l ~s!52
1

6E0

`

dx
x3

x1s
w8~x1s!. ~11!

The one-dimensional Fourier transformation yields

l ~q!5
2

q4E0

`

dxF12
q2x2

2
2cos~qx!G w8~x!

x
, ~12!

which is quite similar to our expression in the tw
dimensional case~8! except that the persistence length
divided by the momentum to the fourth power. To make
connection manifest, we use the fact that the o
dimensional deformed polymer can be viewed as a
through a membrane, with an effective interactionw(r ),
which is obtained after integration of the interactionv(r )
over the transverse coordinate according to

w~s!5E
2`

`

dxv~As21x2!. ~13!

In fact, inserting the interaction~13! into expression~12!, we
exactly obtain Eq.~8! divided byq4. This is not surprising,
since in Gaussian order, no mode-mixing occurs and, th
fore, a single-mode expansion with a wave vector point
along a definite direction yields the same kernel as our g
eral expansion done in the last section. Clearly, this equ
lence will disappear at next-leading order in the vertex fu
tions, which, however, is not pursued in this paper.

III. GAUSSIAN THEORY FOR INTERACTIONS WITHIN
A SALTY MEMBRANE

In this section we consider the partition function of a sa
membrane, i.e., of a flexible two-dimensional layer that is
average neutral and contains mobile positive and nega
ions. The main goal here will be to derive the effective p
potential between two segments of such a membrane w
Gaussian theory, which can then be used as an input into
nonlocal elasticity theory developed in the last section.

The Gaussian field theory for a flexible layer that conta
salt ions and is described by a height functionh(R) reads

Z@h#5E Df

Zv
expH 2

1

2E d3rE d3r 8f~r !vDH
21~r ,r 8!f~r 8!J ,

~14!
1-3
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ROLAND R. NETZ PHYSICAL REVIEW E 64 051401
where Zv is the partition function of the inverse Coulom
operator,Zv;Adetv. This second-order expansion corr
sponds to the Debye-Hu¨ckel ~DH! theory generalized to an
interfacial geometry. The higher-order terms in the fluctu
ing field f that we neglect contain nonlinear effects~such as
present in the Poisson-Boltzmann theory!, but also higher-
order correlation effects. These higher-order terms have
cently been considered for the bulk situation in a system
field-theoretic expansion@44#. The ion-pairing approxima-
tion, introduced in Sec. IV B, is a heuristic approach tha
capable of dealing with these nonlinear effects. It is imp
tant to note that the DH theory in the present formulatio
although it neglects nonlinear effects, goes beyond the m
field ~Poisson-Boltzmann! approach in that correlations an
fluctuations are included on a Gaussian level. The kernelvDH

21

is the functional inverse of the DH potential and is defin
by @45#

vDH
21~r ,r 8![vC

21~r2r 8!1k2d~r2r 8!/4pl B

1k5A11@¹h~R!#2d@z2h~R!#

3d~r2r 8!/4pl B , ~15!

where vC(r )5l B /r is the Coulomb potential andl B
5e2/4p«kBT is the Bjerrum length. The screening length
the bulk,k21, is defined in the standard way by

k254pl B(
j

~qj !
2cj , ~16!

whereqj and cj are the valency and concentration of ion
speciesj. A second length scale emerges,k5

21 , which is
defined by

k554pl B(
j

~qj
5!2cj

5 , ~17!

whereqj
5 andcj

5 are the valency and surface density of io
located in the membrane. The full partition function~14!
with an arbitrary position of the ion-containing surfaceh is
intractable. So we intend to use the perturbative treatm
from the last section, for which we need as an input the p
interaction between membrane segments calculated for
planar reference membrane configuration. Since the m
brane position in the planar state constitutes a symm
plane, no perpendicular force component is present, and
only potential contribution comes from a membrane d
placement along the membrane surface~which is analogous
to saying that the electrostatic forces generate no out
plane torque; note that this is different in situations where
up-down symmetry is broken as, for example, for charg
interfaces between two different media!. To calculate the ef-
fective interaction between membrane segments we defi
new partition function that includes a lateral displacemen
membrane segments,
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Z5E Df

Zv
expH 2

1

2E d3rE d3r 8f~r !vDH
21~r ,r 8!f~r 8!

2
k5

8pl B
E d3rd~z!g~R!f2~r !J . ~18!

The weight functiong(R) is defined as

g~R!5d~R1a!2d~R!1d~R2R02a!2d~R2R0!,
~19!

and corresponds to the displacement of two membrane
ments, which are at a distanceR0 by a small stepa each
~which we assume to point along the direction of the dista
vector!. In the limit of small incremental displacementa the
weight function can be written as

g~R!5a“d~R2R0!2a“d~R!1O~a2!. ~20!

The second derivative of the effective interaction betwe
membrane segments, which we denote byv(R), then follows
as

2v9~R0!5
ln Z2 ln Z~a50!

a2 U
a50

, ~21!

whereZ denotes the modified partition function defined
Eq. ~18!. Expanding the partition function in powers ofa and
using Wicks theorem, the second derivative of the interact
potential is

v9~R0!52
k5

2

32p2l B
2

]2

]R0
2 ^f~R!f~R1R0!&2. ~22!

Integrating both sides twice, omitting any integration co
stants, the final result for the membrane pair potential is

v~R0!52
k5

2

32p2l B
2 vDH

2 ~0,R0!, ~23!

wherevDH is given by Eq.~15! and using a planar membran
h50. It remains to actually calculatevDH(r ,r 8), which is
complicated because of the broken translational invarianc
thez direction. Since the system still has translational inva
ance parallel to the plane, we user5(R,z)5(x,y,z) and
may write

vDH~r ,r 8!5E d2p

~2p!2
eıp•(R2R8)vDH~z,z8,p!, ~24!

with a similar transformation for the inverse potentialvDH
21 .

The solution can be calculated in a straightforward m
ner and is given by@45#
1-4
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vDH~z,z8,p!5
2pl B

Ak21p2 Fexp@2uz2z8uAk21p2#

2
k5

2Ak21p21k5

exp@2~ uzu1uz8u!

3Ak21p2#G . ~25!

In the limit of two points confined to the salty plane th
kernel becomes

vDH~z50,z850,p!5
4pl B

2Ak21p21k5

. ~26!

The Debye-Hu¨ckel interaction in real space follows by
two-dimensional Fourier transformation and only depends
the lateral distanceR between the two points, it reads

vDH~R!5l BE
0

` dppJ0~pR!

Ak21p21k5/2
, ~27!

where J0 is the Bessel function of first kind@46#. In the
absence of salt in the bulk, i.e., fork50, the integral can be
calculated in closed form and leads to@47#

vDH~R!5
l B

R

pl Bk5

4 S N0FRk5

2 G2H0FRk5

2 G D , ~28!

whereN0 andH0 denote the Neumann and the Struve fun
tions, respectively@46#. The asymptotic behavior is

vDH~R!.
l B

R
1

l Bk5

2
ln@Rk5#, ~29!

for R!k5
21 , and

vDH~R!.
4l B

k5
2 R3

, ~30!

for R@k5
21 . We see that screening is for large separatio

much weaker than in the case of a three-dimensional
solution, resulting in a DH interaction that is in fact lon
ranged. In the presence of salt ions in the embedding sp
the behavior is modified at large separations. The beha
now depends on the relative salt concentration in the in
face and in the bulk: fork.k5 , that means for large bulk
salt concentration, one has a behavior described by Eq.~29!
for short separationsR,k21 and the regular DH interaction

vDH~R!5
l Be2kR

R
, ~31!

for R.k21; in this case the salt ions in the plane are re
tively unimportant. In the opposite limit,k,k5 , for small
bulk salt concentration, one obtains Eq.~29! for short sepa-
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21 , Eq. ~30! for R.k5

21 , and a crossover be
tween Eqs.~30! and ~31! at R;k21 ln@k5 /k#.

IV. RESULTS

In this section we present results for the effective bend
rigidity of a salty membrane. We also look at the full nonl
cal behavior of the elastic modulus. In specific, we will s
that for large momenta a modified effective elastic behav
results. In the first part, we will do the analysis for the sa
membrane in the Gaussian approximation, as derived in
previous section. In the second part, we will derive an
proximation that should be valid in the strong-coupling lim
namely, we will consider the positive and negative ions
form strongly bound dipole pairs in the membrane pla
The effective interaction between rotating dipoles gives
effective interaction that is one contribution to the van d
Waals energy. In the latter case, the contribution to the be
ing rigidity is much larger.

A. Gaussian approximation

The effective interaction between membrane segment
determined by Eqs.~23! and~27!. For sufficiently large con-
centration of ions in membrane,k5.k, the effective inter-
action is given by

v~R!.2
k5

2

32p2 5
1

R2
for R,

2

k5

16

k5
4 R6

for
2

k5
,R,

2 ln~k/2k5!

k
,

e22kR

R2
for

2 ln~k/2k5!

k
,R

~32!

whereas for very small membrane ion concentrationk5,k
we obtain the result

v~R!.2
k5

2 e22kR

32p2R2
. ~33!

The potential Eq.~32! contains an intermediate range whe
the presence of membrane ions is important and change
functional form to aR26 dependence. Note that this func
tional form is similar to the van der Waals interaction.

In Fig. 1 we plot the rescaled kernelK̃5Kk5
24 in the limit

of vanishing bulk ion concentrationk50 as determined by
Eqs.~9!, ~23!, and~27! as a function of the rescaled mome
tum q̃5qk5

21 . As is clearly seen, the bending rigidity con
tribution is negative, as expected for an attractive interact
In Fig. 1~b! we plot K̃/q̃4 that goes to a constant for sma
values of the momentum, demonstrating that indeed
small momentum behavior is dominated by the bending
gidity. Figure 1~c! demonstrates that the large scale behav
is described by the behaviorK̃(q̃);q̃2ln(q̃) and thus very
different from the low-momentum behavior.
1-5
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ROLAND R. NETZ PHYSICAL REVIEW E 64 051401
In the presence of bulk salt, and using the expansion~10!,
the bending rigidity follows as

K~q!.2
k5

2 q4

1024pk2
1O~k5

4 /k4!, ~34!

for the case of low membrane-ion density,k5!k, and

K~q!.2
q4

384p
1O~k5

2 /k2!, ~35!

in the limit of high membrane-ion density, fork5@k. The
asymptotic law~35! is denoted by a broken line in Fig. 1~b!.

Remarkably, for large membrane ion concentration,
effective bending rigidity, which is the prefactor of theq4

term in Eq.~35!, goes to a constant value. This saturation
due to the screening done by membrane ions themselves
is of course completely missed by approaches that neg
the screening of interactions due to correlations of membr
ions. It is also seen that the contribution to the bending
gidity is never larger than roughly 1/1000 in units ofkBT and
is, therefore, not large enough by itself to cause membr
buckling since membranes have usually a bending rigidity
the order of or larger than thermal energy. What transpi

FIG. 1. Momentum-dependent elastic rescaled kernelK̃

5Kk5
24 as a function of the rescaled momentumq̃5qk5

21 for a
membrane containing positive and negative ions in the Gaus
approximation with no added salt in the bulk. The plot in~b! shows
that the small-momentum limit is correctly given by Eq.~35!. The
plot in ~c! demonstrates that the large-momentum behavior obe
different power law.
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however, is that the effective elastic energy has a m
slower momentum dependence for large momenta tha
does for small momenta. The present calculation is on
Gaussian level. Nonlinear effects, such as ion pairing,
neglected and lead to an underestimation of the contribu
to the bending rigidity. This is so because the neglect
ion-pairing overestimates the power of ions to screen
interaction. In the following section we present a heuris
analysis that aims at lifting this deficiency.

B. Dipole-dipole interaction

In the following we treat a membrane which contains io
that form ion pairs, i.e., a membrane with mobile and rot
ing surface dipoles. The applications of this model are ma
fold, since lipid bilayers contain zwitterionic headgroups th
indeed exhibit large dipole moments. In the present cont
we wish to interpret this model as an approximation for t
strong-coupling limit where ions are so strongly bound
each other that they can be treated as dipoles in which
two charges are separated by a distanceu.

To proceed, the interaction between two dipoles is giv
by

w~r ,u1 ,u2 ,f!52
u2l B

r 3
@2 cosu1 cosu2

2sinu1 sinu2 cosf#, ~36!

where u1 and u2 are the polar angles with respect to th
connecting line between the two dipoles andf is the mutual
azimuthal angle. The dipole strength in reduced units is
noted by the lengthu.

The effective interactionw̄(r ) between two freely rotating
dipoles is obtained by averaging over all angles accordin

w̄~r !52 lnE
0

2pdf

2pE0

2pdu1

2p E
0

2pdu2

2p
exp@2w~r ,u1 ,u2 ,f!#,

~37!

which corresponds to the Keesom contribution to the van
Waals interaction. The integrals in Eq.~37! cannot be done
in closed form, however, with certain, unimportant modi
cations we can come up with simple close-form expressi
that capture the fundamental physics of the averaging d
in Eq. ~37!.

First, motivated by the calculation done in Sec. III, w
will assume that the dipoles lie in the plane that contains
connecting line between the dipoles. Therefore,f50. The
interaction~36! can be written as

w~r ,u1 ,u2!52
u2l B

r 3
@ 3

2 cos~u11u2!1 1
2 cos~u12u2!#,

~38!

and the averaging over the two angleu1 andu2 in Eq. ~37!
leads to

w̄~r !52 ln~I0@u2l B/2r 3#I0@3u2l B/2r 3# !, ~39!

with the limiting behavior

an

a

1-6
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w̄~r !.25
u2l B

r 3
for r ,~u2l B!1/3

5u4l B
2

8r 6
for ~u2l B!1/3,r .

~40!

To make the resulting functional form of the interactio
even simpler, we now assume both dipoles to rotate in pla
perpendicular to the connecting line, i.e., we setu15u2
5p/2. The interaction~36! is, therefore, given by

w~r ,f!5
u2l B cosf

r 3
, ~41!

and the averaging~37! leads to

w̄~r !52 ln~I0@u2l B /r 3# !. ~42!

The limiting behavior of this expression is

w̄~r !.25
u2l B

r 3
for r ,~u2l B!1/3

u4l B
2

4r 6
for ~u2l B!1/3,r ,

~43!

and we again obtain ar 26 decay for large separations, a
expected for van der Waals type of interactions. T
asymptotic form of the interaction given by~37! with all
three interactions integrated over will be similar to our
sults for the simplified cases. For a collection of many
poles one expects multibody effects, and in specific one
pects the two-body interaction to be effectively weaken
due to the coupling to other dipoles. We remind oursel
that it is a similar coupling between mobile ions that chan
the DH potential at an interface containing mobile ions fro
a 1/r decay to a 1/r 3 decay at large separations, see Eq.~30!.
However, in the present case, this effect is expected to
much smaller, since dipoles are much less effective
screening than free charges. First of all, it is known that
presence of a dielectric~dipolar! medium only changes th
prefactor of the charge-charge interaction and not the typ
power of decay. This is true if the dielectric medium is d
tributed over the entire three-dimensional space. In
present case the rotating dipoles are confined to a plane
the long-range response functions are not modified for la
separations, not even the prefactors@48#. We, therefore, can
neglect the presence of other rotating dipoles in calcula
the effective interaction, at least for large separations@49#.

The effective interaction between membrane segmen
proportional to the dipole density squared. Assuming that
salt ions form dipoles, the dipole density equals the salt d
sity c5 in the membrane layer. We obtain for the effecti
interaction between two membrane segments covered
rotating dipoles@where for numerical convenience we ta
the somewhat simpler expression~42!#

v~r !52c5
2 ln~I0@u2l B /r 3# !. ~44!
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In Fig. 2 we plot the rescaled kernelK̃5Kc5
22 as deter-

mined by Eqs.~9! and ~44! as a function of the rescale
momentumq̃5q(u2l B)1/3. As is clearly seen, the bendin
rigidity contribution is negative, as expected for attracti
interactions. In Fig. 2~b! we plotK̃/q̃4 that goes to a constan
for small values of the momentum, similarly to our resu
for the Gaussian calculation displayed in Fig. 1~b!. Using the
expansion~10! the bending rigidity is determined by

K~q!.20.323 55c5
2 q4u8/3l B

4/3, ~45!

which is denoted by a broken line and agrees with
asymptotic behavior of the full kernel displayed in Fig. 2~b!.
Figure 2~c! demonstrates that the large scale behavior is
scribed by the behaviorK̃(q̃).22q̃3 and thus intermediate
in scaling between a bending energy and a surface tens

A rough estimate for the maximal value of the numeric
prefactor in Eq.~45! can be obtained by assuming a dipo
length of the orderu'l B and a close-packed array of ion
c5'1/u2, in which case one hasK(q)'2q4/3. This corre-
sponds to a negative contribution to the bending rigidity
1/3 ~in units of the thermal energy!, which for a bilayer has

FIG. 2. Momentum-dependent elastic rescaled kernelK̃

5Kc5
22 as a function of the rescaled momentumq̃5q(u2l B)1/3 for

a membrane containing positive and negative ions in the ion-pa
approximation. The plot in~b! shows that the small-momentum
limit is correctly given by Eq.~45!. The plot in ~c! demonstrates
that the large-momentum behavior obeys a different power law
1-7
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to be multiplied by a factor of 2 and might be large enou
to lead to the undulations observed for soft surfactant lay
in Refs.@28,29#.

To obtain an independent estimate for the appropr
prefactor of the interaction in Eq.~45! we remind ourselves
that the van der Waals interaction between two membr
unit volumina goes likew(r )5A/p2r 6, whereA is the di-
mensionless Hamaker constants, which for membrane
water is of the order of unity~in units of thermal energy!.
The van der Waals interaction between two membrane
ments of thicknessd goes like v(r )5Ad2/p2r 6 for large
separations. Comparing this with the long-range behavio
Eq. ~42! we obtain the relationc5

2 u4l B
254d2A/p2. We as-

sume that the Hamaker constant only considers contribut
due to fluctuating dipoles. We can thus eliminate the den
of ions from the elastic energy expression~45! and obtain

K~q!.2
0.131 13d2Aq4

~u2l B!2/3
. ~46!

Assuming realistic values for the membrane thicknessd
'3 nm, Bjerrum length,l B'0.7 nm, and the dipole length
u'0.4 nm, the bending rigidity contribution becomes

K~q!/q4'25A. ~47!

We see that the negative contribution to the bending rigid
can be comparable to unity and thus induce a buckling tr
sition of flexible membranes if the corresponding Hama
constantA is large enough. We hasten to add that the re
for the leadingq4 term of the elastic energy depends sen
tively on the small-distance behavior of the interaction. F
the present case of rotating dipoles, this interaction diver
as r 23 for small separations, see Eq.~42!, which gives an
integrable but quite large contribution to the bending rigidi
For a different cutoff a different result will be obtained.

V. DISCUSSION

In this paper we introduce a method to calculate, based
an arbitrary pairwise interaction between membrane s
ments, the effective nonlocal elastic modulus for membr
deformations. We use this method to calculate
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momentum-dependent energy spectrumK(q) for deforma-
tions of a neutral membrane containing mobile positive a
negative ions. This calculation is done~i! in the Gaussian
approximation, which should be valid when the fraction
strongly bound ion pairs is small, and~ii ! in the ion-pair
approximation, where all ions are assumed to form tigh
bound ion pairs. Both calculations give qualitatively th
same behavior~with the ion-pair approximation yielding a
larger prefactor to the bending energy contribution!, exhibit-
ing a negative elastic kernel, i.e.,K(q),0. For small mo-
menta~large length scales! the elastic energy is characterist
of a bending energy, i.e., it behaves asK(q);2q4. For
large momenta the elastic energy shows a weaker de
dence on the momentum: We obtainK(q);2q3 for the
ion-pairing approximation andK(q);2q2ln q for the
Gaussian approximation. Assuming that the interacti
induced bending rigidity contribution is indeed large enou
such as to overcompensate the bare bending rigidity, w
will be the structure of the membrane? Adding t
interaction-induced elastic energy due to dipolar interacti
proportional toK(q);2c5

2 (u2l B)4/3q4 for small wave vec-
tors andK(q);2c5

2 (u2l B)q3 for large wave vectors~com-
pare Fig. 2!, and the bare mechanical bending energy, p
portional toK0q4, there will be a maximally instable wav
vector at some length scale of the orderl*
;K0c5

22(u2l B)21. Assuming that there are higher-ord
terms in the membrane displacement that will stabilize
membrane shape, this suggests that the membrane show
dulations of this wavelengthl* . These findings, therefore
might help to explain the recently observed undulations
strongly charged membranes@28,29# and the superstructure
frequently observed with neutral phospholipids@36#. In this
respect it is worth repeating that even neutral lipids cont
large dipole moments due to their zwitterionic nature.

Comparing our result for the bending rigidity within th
Gaussian approximation, Eq.~35!, with the result by Lau and
Pincus@24#, we note that the results differ by a factor of 1
and a logarithmic term. It is conceivable that the difference
due to the fact that we perform a perturbative expansion~to
second order of the membrane displacement fieldh) around
a flat reference state, whereas Lau and Pincus evaluate
free energies of cylindrical and spherical shapes in a la
radius expansion. This issue deserves further studies.
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